3.63 \(\int \frac{x}{\sin ^{-1}(a x)^3} \, dx\)

Optimal. Leaf size=64 \[ -\frac{\text{Si}\left (2 \sin ^{-1}(a x)\right )}{a^2}-\frac{x \sqrt{1-a^2 x^2}}{2 a \sin ^{-1}(a x)^2}-\frac{1}{2 a^2 \sin ^{-1}(a x)}+\frac{x^2}{\sin ^{-1}(a x)} \]

[Out]

-(x*Sqrt[1 - a^2*x^2])/(2*a*ArcSin[a*x]^2) - 1/(2*a^2*ArcSin[a*x]) + x^2/ArcSin[a*x] - SinIntegral[2*ArcSin[a*
x]]/a^2

________________________________________________________________________________________

Rubi [A]  time = 0.168357, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 8, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.875, Rules used = {4633, 4719, 4635, 4406, 12, 3299, 4641} \[ -\frac{\text{Si}\left (2 \sin ^{-1}(a x)\right )}{a^2}-\frac{x \sqrt{1-a^2 x^2}}{2 a \sin ^{-1}(a x)^2}-\frac{1}{2 a^2 \sin ^{-1}(a x)}+\frac{x^2}{\sin ^{-1}(a x)} \]

Antiderivative was successfully verified.

[In]

Int[x/ArcSin[a*x]^3,x]

[Out]

-(x*Sqrt[1 - a^2*x^2])/(2*a*ArcSin[a*x]^2) - 1/(2*a^2*ArcSin[a*x]) + x^2/ArcSin[a*x] - SinIntegral[2*ArcSin[a*
x]]/a^2

Rule 4633

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(x^m*Sqrt[1 - c^2*x^2]*(a + b*ArcSin
[c*x])^(n + 1))/(b*c*(n + 1)), x] + (Dist[(c*(m + 1))/(b*(n + 1)), Int[(x^(m + 1)*(a + b*ArcSin[c*x])^(n + 1))
/Sqrt[1 - c^2*x^2], x], x] - Dist[m/(b*c*(n + 1)), Int[(x^(m - 1)*(a + b*ArcSin[c*x])^(n + 1))/Sqrt[1 - c^2*x^
2], x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]

Rule 4719

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
((f*x)^m*(a + b*ArcSin[c*x])^(n + 1))/(b*c*Sqrt[d]*(n + 1)), x] - Dist[(f*m)/(b*c*Sqrt[d]*(n + 1)), Int[(f*x)^
(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n,
-1] && GtQ[d, 0]

Rule 4635

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*S
in[x]^m*Cos[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rubi steps

\begin{align*} \int \frac{x}{\sin ^{-1}(a x)^3} \, dx &=-\frac{x \sqrt{1-a^2 x^2}}{2 a \sin ^{-1}(a x)^2}+\frac{\int \frac{1}{\sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2} \, dx}{2 a}-a \int \frac{x^2}{\sqrt{1-a^2 x^2} \sin ^{-1}(a x)^2} \, dx\\ &=-\frac{x \sqrt{1-a^2 x^2}}{2 a \sin ^{-1}(a x)^2}-\frac{1}{2 a^2 \sin ^{-1}(a x)}+\frac{x^2}{\sin ^{-1}(a x)}-2 \int \frac{x}{\sin ^{-1}(a x)} \, dx\\ &=-\frac{x \sqrt{1-a^2 x^2}}{2 a \sin ^{-1}(a x)^2}-\frac{1}{2 a^2 \sin ^{-1}(a x)}+\frac{x^2}{\sin ^{-1}(a x)}-\frac{2 \operatorname{Subst}\left (\int \frac{\cos (x) \sin (x)}{x} \, dx,x,\sin ^{-1}(a x)\right )}{a^2}\\ &=-\frac{x \sqrt{1-a^2 x^2}}{2 a \sin ^{-1}(a x)^2}-\frac{1}{2 a^2 \sin ^{-1}(a x)}+\frac{x^2}{\sin ^{-1}(a x)}-\frac{2 \operatorname{Subst}\left (\int \frac{\sin (2 x)}{2 x} \, dx,x,\sin ^{-1}(a x)\right )}{a^2}\\ &=-\frac{x \sqrt{1-a^2 x^2}}{2 a \sin ^{-1}(a x)^2}-\frac{1}{2 a^2 \sin ^{-1}(a x)}+\frac{x^2}{\sin ^{-1}(a x)}-\frac{\operatorname{Subst}\left (\int \frac{\sin (2 x)}{x} \, dx,x,\sin ^{-1}(a x)\right )}{a^2}\\ &=-\frac{x \sqrt{1-a^2 x^2}}{2 a \sin ^{-1}(a x)^2}-\frac{1}{2 a^2 \sin ^{-1}(a x)}+\frac{x^2}{\sin ^{-1}(a x)}-\frac{\text{Si}\left (2 \sin ^{-1}(a x)\right )}{a^2}\\ \end{align*}

Mathematica [A]  time = 0.0596291, size = 61, normalized size = 0.95 \[ -\frac{a x \sqrt{1-a^2 x^2}+\left (1-2 a^2 x^2\right ) \sin ^{-1}(a x)+2 \sin ^{-1}(a x)^2 \text{Si}\left (2 \sin ^{-1}(a x)\right )}{2 a^2 \sin ^{-1}(a x)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x/ArcSin[a*x]^3,x]

[Out]

-(a*x*Sqrt[1 - a^2*x^2] + (1 - 2*a^2*x^2)*ArcSin[a*x] + 2*ArcSin[a*x]^2*SinIntegral[2*ArcSin[a*x]])/(2*a^2*Arc
Sin[a*x]^2)

________________________________________________________________________________________

Maple [A]  time = 0.026, size = 45, normalized size = 0.7 \begin{align*}{\frac{1}{{a}^{2}} \left ( -{\frac{\sin \left ( 2\,\arcsin \left ( ax \right ) \right ) }{4\, \left ( \arcsin \left ( ax \right ) \right ) ^{2}}}-{\frac{\cos \left ( 2\,\arcsin \left ( ax \right ) \right ) }{2\,\arcsin \left ( ax \right ) }}-{\it Si} \left ( 2\,\arcsin \left ( ax \right ) \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/arcsin(a*x)^3,x)

[Out]

1/a^2*(-1/4/arcsin(a*x)^2*sin(2*arcsin(a*x))-1/2/arcsin(a*x)*cos(2*arcsin(a*x))-Si(2*arcsin(a*x)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{4 \, a^{2} \arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right )^{2} \int \frac{x}{\arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right )}\,{d x} + \sqrt{a x + 1} \sqrt{-a x + 1} a x -{\left (2 \, a^{2} x^{2} - 1\right )} \arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right )}{2 \, a^{2} \arctan \left (a x, \sqrt{a x + 1} \sqrt{-a x + 1}\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arcsin(a*x)^3,x, algorithm="maxima")

[Out]

-1/2*(4*a^2*arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1))^2*integrate(x/arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1)
), x) + sqrt(a*x + 1)*sqrt(-a*x + 1)*a*x - (2*a^2*x^2 - 1)*arctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1)))/(a^2*ar
ctan2(a*x, sqrt(a*x + 1)*sqrt(-a*x + 1))^2)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x}{\arcsin \left (a x\right )^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arcsin(a*x)^3,x, algorithm="fricas")

[Out]

integral(x/arcsin(a*x)^3, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\operatorname{asin}^{3}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/asin(a*x)**3,x)

[Out]

Integral(x/asin(a*x)**3, x)

________________________________________________________________________________________

Giac [A]  time = 1.41823, size = 90, normalized size = 1.41 \begin{align*} -\frac{\operatorname{Si}\left (2 \, \arcsin \left (a x\right )\right )}{a^{2}} - \frac{\sqrt{-a^{2} x^{2} + 1} x}{2 \, a \arcsin \left (a x\right )^{2}} + \frac{a^{2} x^{2} - 1}{a^{2} \arcsin \left (a x\right )} + \frac{1}{2 \, a^{2} \arcsin \left (a x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arcsin(a*x)^3,x, algorithm="giac")

[Out]

-sin_integral(2*arcsin(a*x))/a^2 - 1/2*sqrt(-a^2*x^2 + 1)*x/(a*arcsin(a*x)^2) + (a^2*x^2 - 1)/(a^2*arcsin(a*x)
) + 1/2/(a^2*arcsin(a*x))